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A B S T R A C T 

Chronic hyperglycemic conditions in diabetes mellitus can cause changes that 
result in chronic complications, both macrovascular and microvascular. There are 

several mechanisms thought to cause microvascular damage and retinopathy in 
diabetes, namely the polyol pathway, formation of advanced glycation end 
products (AGE), activation of protein kinase C (PKC), oxidative stress, and 
increased activity of the hexosamine pathway. 

 

1. Introduction  

Diabetes mellitus (DM) is a metabolic disease 

characterized by chronic hyperglycemia resulting from 

absolute or relative insulin deficiency. Chronic 

hyperglycemic conditions in diabetes mellitus can 

cause cellular changes that result in chronic 

complications, both macrovascular and microvascular. 

There are two types of diabetes mellitus, namely DM 

Type 1, or known as insulin-dependent diabetes mellitus 

(IDDM). This type is caused by damage to pancreatic 

beta cells that causes total insulin deficiency. The 

process of type 1 DM occurs due to idiopathic or 

autoimmune processes. DM type 2 or non-insulin-

dependent diabetes mellitus (NIDDM), this type occurs 

due to impaired insulin secretion or insulin 

resistance.1-4 

 

Mechanisms of Hyperglycemic Toxicity 

Several mechanisms are thought to cause 

microvascular damage and retinopathy in diabetes. 

These include the polyol pathway, formation of 

advanced glycation end products (AGE), activation of 

protein kinase C (PKC), oxidative stress, and increased 

activity of the hexosamine pathway. 
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Polyol/Sorbitol pathway 

In DM, there is an excess amount of glucose 

metabolized by the body. This pathway is controlled by 

two enzymes. The first enzyme is aldose reductase, 

which reduces glucose to sorbitol using the cofactor 

nicotinamide adenine dinucleotide phosphate (NADPH). 

Then sorbitol is converted to fructose by sorbitol 

dehydrogenase (SDH). Sorbitol is hydrophilic and 

cannot diffuse into cell membranes, resulting in 

accumulation that causes retinal vascular endothelial 

osmotic dysfunction, pericyte loss, and basement. 5-7 

 

 

 

 

Figure 1. Polyol/Sorbitol pathway. 

 

 

The product of sorbitol is converted into fructose 

which then binds to phosphate to form fructose-3-

phosphate and is broken down into 3-deoxyglucosone, 

which is then formed into advanced glycation end 

products (AGE).     

 

Increased AGE formation 

AGES are proteins or fats resulting from non-

enzymatic glycation reactions and oxidation after 

exposure to aldose sugars. The initial product of the 

non-enzymatic reaction is the Schiff base, which then 

spontaneously turns into the Amadori product. The 

glycation of proteins and fats causes molecular changes 

that produce AGEs. AGE is found in retinal blood 

vessels with serum levels correlated with the severity of 

retinopathy. AGE can bind to cell surface receptors 

such as RAGE, galectin-3, CD36, and macrophage 

receptors. AGE modifies hormones, cytokines, and 

extracellular matrix, resulting in vascular damage. In 

addition, AGE also inhibits DNA synthesis, increases 

VEGF mRNA, increases NF-kB in vascular 

endothelium, and triggers retinal pericyte apoptosis.8-

11 
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Figure 2. Formation of advanced glycation endproducts (AGE).12 

 

 

Activation of PKC 

Protein Kinase C (PKC) is a serine kinase that plays 

a role in hormonal, neuronal transduction, and growth 

factors. Hyperglycemia increases levels of diacylglycerol 

(DAG), which causes an increase in PKC activation. 

PKC activation causes various changes in endothelial 

permeability, hemodynamics, leukostasis, apoptosis, 

cytokine activation, basement membrane thickening, 

and abnormal angiogenesis.14 

 

 

 

Figure 3. PKC activation15 
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Oxidative stress 

Oxidative stress is a severe complication that can 

lead to microvascular complications and is an 

imbalance between the production of reactive oxygen 

species (ROS) and the body's ability to eliminate ROS 

with antioxidants. In normal physiology, ROS helps the 

body damage foreign microorganisms that can damage 

cells. However, high ROS levels can damage cells 

through lipid peroxidation, DNA modification, protein 

destruction, and mitochondrial damage. Oxidative 

stress causes various damage to cell components and 

contributes to the pathogenesis of various diseases. 

16,17 

 

Hexosamine pathway 

The hexosamine pathway is activated when there is 

excess intracellular glucose that cannot be broken 

down by glycolysis. Normally, excess glucose is 

converted to glucose-6-phosphate, which is converted 

to fructose-6-phosphate. In DM, fructose-6-phosphate 

is converted to N-acetyl-glucosamine-6-phosphate by 

glutamine fructose-6-phosphate amidotransferase 

(GFAT). The high production of glucosamine-6-

phosphate triggers the production of uridine 

diphosphate N-acetyl glucosamine (UDP-GlcNAc) which 

causes changes in protein function and gene 

expression that reduce cell protection and can induce 

apoptosis.18-20 

 

2. Conclusion 

There are several mechanisms thought to cause 

microvascular damage and retinopathy in diabetes, 

namely the polyol pathway, formation of advanced 

glycation end products (AGE), activation of protein 

kinase C (PKC), oxidative stress, and increased activity 

of the hexosamine pathway. 
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