1. Introduction

Breast milk does have a very important role in providing the nutrition needed by newborn babies. Breast milk contains all the nutrients needed by babies, including protein, fat, carbohydrates, vitamins, and minerals. This complete nutritional content supports healthy growth and development. Breast milk contains antibodies and other immune substances that help babies fight infections and diseases. This provides additional protection during the early period of a baby's life when they are still susceptible to infection. Breastfeeding also allows for a strong emotional bond between mother and baby. The breastfeeding process provides an opportunity for mother and baby to interact with each other, creating a deep bond. Apart from providing benefits for the baby, breastfeeding also has a positive effect on the mother’s health. Breastfeeding also has health benefits for the mother. The process of breastfeeding helps the uterus to recover more quickly after delivery and can reduce the risk of postpartum bleeding. Apart from that, breastfeeding also helps mothers to recover more quickly from childbirth.1-3

Breast milk production in postpartum mothers can be influenced by various factors, and some mothers may experience disruption in their breast milk production. Breast milk production is greatly influenced by stimulation from the breastfeeding baby. If the baby rarely breastfeeds or does not get enough breastfeeding time, this can inhibit breast milk production. Some maternal health conditions, such as thyroid problems, diabetes, or polycystic ovary
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
pituitary gland in the brain to increase the release of the hormone prolactin. Quercetin has several properties that may be beneficial in increasing breast milk production, primarily through its effect on the hormone prolactin. Several studies in experimental animals have shown that quercetin can increase the release of the hormone prolactin by the pituitary gland in the brain. Prolactin is a hormone that is important in the regulation of breast milk production. By stimulating the release of prolactin, quercetin can help increase breast milk production. Quercetin’s anti-inflammatory properties may also be beneficial in the context of breastfeeding. Because inflammation can interfere with breast milk flow, reducing inflammation can help ensure better milk flow. The antioxidant properties of quercetin may help protect the mammary glands from oxidative damage that can interfere with breast milk production. By maintaining healthy mammary glands, quercetin can contribute to better breast milk production.10-12

Tannin is a compound found in katuk leaves and various other foods and drinks. Tannins can affect the hormonal system and help increase breast milk production by stimulating the release of prolactin. The influence of tannins on breast milk production is mainly related to their properties as astringent compounds. Astringent is a drying sensation that occurs when compounds such as tannins interact with proteins in the body. This can affect breast tissue and trigger the release of prolactin from the pituitary gland in the brain. Saponins are compounds that have various health benefits, including the potential to increase breast milk production. The saponins in katuk leaves can influence breast milk production by modulating the activity of the hormone prolactin. Prolactin is a hormone produced by the pituitary gland in the brain and has a major role in stimulating the mammary glands to produce breast milk. Therefore, if the compounds in katuk leaves can affect prolactin, this could contribute to increased breast milk production.13-15

4. Conclusion

There is an effect of giving katuk leaves on breast milk production for postpartum mothers at the Wanayasa Health Center, Purwakarta Regency, Indonesia.

5. References

2. Izzati M, Dewi IN, Masyita D. The Effect of Sauropus androgynus leaf extract on prolactin level and latch score on postpartum women with low milk production. IOP Conf Ser Earth Environ Sci. 2019; 387: 012052.


